Following is a simple binary search implementation:
int binary_search(){ int n, k; cin >> n >> k; vector<int>a; a.resize(n); for (int i=0; i<n; i++){ cin >> a[i]; } int mid, left = 0, right = n-1; while(left <= right){ mid = (left+right)/2; if (a[mid] == k){ cout << "Yeas! " << mid << "\n"; return 0; } else if (a[mid] < k){ left = mid + 1; } else { right = mid - 1; } } cout << "No!" << "\n"; return 0;}
Time complexity:
\text{Let } n &\text{ be the number of elements in the array.} \\ \text{At each step, the size of the search space is halved,} &\text{ so the recurrence relation is:} \\ T(n) &= T\left(\frac{n}{2}\right) + O(1) \\ \text{After } k \text{ iterations, the search space becomes } \frac{n}{2^k} &\text{ elements.} \\ \text{We stop when there is only one element left, i.e.,} &\text{ when } \frac{n}{2^k} = 1. \\ n &= 2^k \\ \log_2{n} &= k \\ \text{Therefore, the time complexity } T(n) &\text{ is:} \\ T(n) &= O(\log_2{n}) \end{align*} $$